IJCRT.ORG

ISSN : 2320-2882

RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Investigation of Air Quality Index of Jalna City (MS), India.

B. S. DOBHAL¹, R. P. SHIMPI^{1*}, M.J. Hebade¹ and MAZAHAR FAROOQUI²

¹State Ambient Air Quality Monitoring Programme (SAMP), Department of Chemistry, Badrinarayan Barwale College, Jalna-431203, (MS) India.

²Principal, Maulana Azad college of Arts, Science and Commerce, Aurangabad-431001, (MS), India

Abstract: The current paper investigates study of ambient air quality of Jalna city in which an effort has been made to prepare an account of pollutants (PM_{10} , $PM_{2.5}$, SO_2 , NOx) at regional level to know the recent increasing air pollution load in the study area by means of Air Quality index determination. Monitoring stations were set up at two different locations i.e. industrial and residential and samples have been analyzed, subsequently air quality index has been computed. The result reveals that gaseous pollutants such as SO_2 and NOx are within the permissible limits prescribed by National Ambient Air Quality standards (NAAQS) at both the monitoring locations. The calculated AQIs value for SO_2 and NOx falls under good category. $PM_{2.5}$ levels and also PM_{10} levels exceeded the prescribed standards of NAAQS at both the monitoring locations, thus particulate matter is the principal source of air pollution in the study area. The calculated AQI values of PM_{10} and $PM_{2.5}$ falls under moderate and poor categories. The overall AQI was found to fall under poor category owing to $PM_{2.5}$. Thus it is observed that $PM_{2.5}$ and to some extent PM_{10} are responsible pollutants at both these locations of Jalna city. Members of sensitive groups like older adults and children may experience health effects like heart or lung disease on prolong exposure and at greater risk compared to general public.

Keywords: Ambient air quality, Air Quality Index (AQI), Gaseous pollutants- SO_2 , NOx, Particulate pollutants, RSPM - Respirable Suspended Particulate Matter ($PM_{2.5}$), NRSPM - Non Respirable Suspended Particulate Matter (PM_{10}), Residential area, Industrial area.

INTRODUCTION:

Air is one of the most vital constituent of our environment. Humans require on an average 12 kg air everyday which is 12 to 15 times more food consumed daily. Any change in composition of air badly affects living system including human life causing air pollution. Environmental pollution is increasing at a frightening rate steadily and environment monitoring agencies indicated the harmful effects of over pollution. Various activities responsible for the destruction of environment are population explosion, emission and industrialization¹⁻³, insufficient public facilities⁴, automobiles⁵ and urbanization⁶. All such factors are immensely declining human health, assets and climate⁷⁻¹⁰. Amongst various air pollutants sulphur dioxide, nitrogen oxides and particulate matter are primary pollutants notified by environment protection agency. Amount of air pollutants in particular area depends on factors like sources of pollutionlocal and distant, conditions of the area-meteorological and topographical, spatial and temporal variations¹¹⁻¹⁴. Accurate knowledge of air pollutants, their concentrations, variations and field data are essential for appropriate management of these issues ^{15,16} if not it would hamper environment planning activities. Majority of countries including India initiated ambient air quality programs to identify air quality by preparing statistics on air pollutant concentrations in ambient air¹⁷. To handle this crisis EPA started Air Quality Index (AQI) which mathematically relates concentration of various pollutants and offer a single quantity representing the air quality of particular place using air quality index rating scale¹⁸⁻²¹. In Bikaner city particulate matters concentration found high in winter and low in monsoon²². In Vapi city which is moderately polluted city PM₁₀ was found to be fundamental pollutant²³. Compiled data for 2013-2014 for 72 AAQM stations collected by MPCB showed moderate to below air quality²⁴. In expansion of our previous work²⁵⁻²⁷ this paper investigates monthly -April, May and June 2019 variations in ambient air quality of selected monitoring stations residential (IMA hall) and industrial (Krishidhan seeds) of Jalna city by means of air quality index (AQI).

MATERIALS AND METHODS:

Study area: Jalna district is approximately situated in the central part of Maharashtra state and in northern part of Marathwada region in India. Jalna district lies between $19^{\circ}1^{1}$ to $23^{\circ}3^{1}$ north latitudes and $75^{\circ}4^{1}$ to $76^{\circ}4^{1}$ east longitudes. It has an area of 7612 km² which is about 2.47% of total area of Maharashtra in India. The district has subtropical climate with bulk rainfall from the southwest monsoon from June to September. The average rainfall of the district is about 650 to 750 mm. The district during drought has rainfall as low as 400 to 450 mm. After rainy season winter extends up to February during which the minimum temperature drops to 9° to 10°C and maximum temperature reaches up to 30-35°C. After winter hot summer extends up to June. The maximum day temperature reaches to $42-45^{\circ}C$ in summer²⁸⁻²⁹.

Jalna is industrially famous for seed and steel industries. The industrial development of Jalna is broadly based on Engineering, Plastic and Agriculture. At present six industrial areas are under Maharashtra Industrial Development Corporation (MIDC), Jalna containing pulses mills, oil mills, refineries, steel re-rolling, plastics, tiles and cement pipes, fertilizers, insecticides, pesticides and the co-operative sugar

factories. These industries, growing numbers of the automobiles, high traffic density, heavy vehicle movement, presence of industrial area in the vicinity, natural dust, construction and mining works and dust storms, etc are the main causes of air pollution in the city^{30, 31}.

Sampling and analysis of particulate pollutant (RSPM and NRSPM):

The samples of RSPM (PM_{2.5}), NRSPM (PM₁₀), SO₂ and NOx were collected twice a week during April to June 2019 from industrial and residential sites. For collecting samples High volume air sampler (model RDS APM 460NL with gaseous sampling attachment APM 411TE (make Enviro-tech India Pvt. Ltd.) was used by operating the equipment for 24 hours period. Particulate pollutants i.e. RSPM and NRSPM samples were collected by regulating air with flow rate between 1.1-1.2 m³/min up to 8 hours. The air inside the sampler passed in two stages through a combination of cyclone separator and filter. The cyclone separator gathers bigger particles i.e. non respirable particulate matter (NRSPM) (particle size> 10 μ m) in previously weighed dust collector in first stage, while remaining particulate i.e. RSPM (size< 10 μ m) were collected over a previously dried weighed glass microfiber filter (Whatmann GF/A, 203x254mm). Gravimetrically the concentration of RSPM and NRSPM were determined by standard method, CPCB 2011³².

Gaseous pollutants (SO2 and NOx):

The ambient air samples for SO_2 were collected by absorbing SO_2 from known volume of air in absorbent solution of potassium tetrachloromercurate (TCM). A stable dichlorosulphitomercurate complex formed was made to react with para rosaniline and methyl sulphonic acid. The coloured solutions absorbance was noted at 530 nm by spectrophotometer. Sulphate ions formed its concentration in absorbent was found by using modified West and Gaeke Method (IS 5182 part 2:2001); CPCB 2001³³.

Ambient nitrogen dioxide was collected by bubbling known volume of air through a solution of sodium hydroxide and sodium arsenite. The nitrile ion concentration produced during sampling were found calorimetrically by reacting nitrile ion with phosphoric acid, sulphanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride (NEDA) and measuring the absorbance of the highly coloured azo-dye at 540 nm^{34,35}.

Air Quality Index (AQI):

AQI is single number which illustrates overall ambient air quality grade based on actual measured concentration of criteria pollutants and its prescribed standard permissible concentration^{36, 37}.

For analyzing and representing uniform air quality status AQI is key existing tool.

Equation for Calculation of AQI is

$$AQI = (\frac{100}{n})\sum_{k=1}^{n} (\frac{APC_k}{SPC_k})$$

Where, AQI= air quality index n = number of criteria pollutants APC= Actual pollutant concentration SPC= Standard pollutant concentration (CPCB 2011) Table.1 Indian National Ambient Air quality standard

Sr.	Pollutant	Time weighted	Air Quality Standard concentration in Ambient air			
No.		Average	Industrial, residential,	Ecologically sensitive		
			rural and other area	area (notified by central		
				Govt.)		
1	$SO_2 \mu gm/m^3$	Annual	50	20		
		24 hours	80	80		
2	$NO_2 \mu gm/m^3$	Annual	40	30		
		24 hours	80	80		
3	$PM_{10} \mu gm/m^3$	Annual	60	60		
		24 hours	100	100		
4	$PM_{2.5} \mu gm/m^3$	Annual	40	40		
		24 hours	60	60		

OBSERVATION AND ANALYSIS:

Table.2 represents the location of sampling stations whereas table.3 gives the breakpoint concentration of various pollutants. These breakpoint concentrations are used to calculate the sub index of each pollutants and value of highest sub index is called AQI. Table.4 gives average concentration of $PM_{2.5}$, PM_{10} , SO_2 and NOx (μ gm/m³) at residential and industrial sites. Variations of $PM_{2.5}$, PM_{10} , SO_2 and NOx (μ gm/m³) at residential and industrial sites. Variations of $PM_{2.5}$, PM_{10} , SO_2 and NOx (μ gm/m³) at residential and industrial sites is represented graphically in graph 1 and 2 respectively. Table.5 indicates the maximum, minimum and average AQI at both the sampling stations.

 Table 2: Location of monitoring stations

Sr.	Station Name		Location	
No.		Latitude	Longitude	Elevation
1	Residential site: IMA Hall	19º84'86.87"N	75°88'92.84"E	503m
2	Industrial site: Krishidhan Seeds Pvt.	19º85'04.63"N	75°85'32.35"E	524m
	Ltd.			

600

Google Maps Indian Medical Association Hall, संभाजी नगर, जालना, महाराष्ट्र and Krishidhan seeds

Table.3 Breakpoints for AQI Scale 0-500 (Units: µgm/m³ unless mentioned otherwise)

uie 0 500 (Cinto. Mon		mentioned	(other wise)
PM ₁₀	PM2.5	SO ₂	NOx	
24-hr	24-hr	24-hr	24-hr	
0-50	0-30	0-40	0-40	
<u>51-1</u> 00	31-60	41-80	41-80	AN N
101-250	61-90	81-380	81-180	A 4 3 7
251-350	91-120	381-800	181-280	
351-430	121-250	801-1600	281-400	
430+	250+	1600+	400+	
	PM10 24-hr 0-50 51-100 101-250 251-350 351-430 430+	PM10 PM2.5 24-hr 24-hr 0-50 0-30 51-100 31-60 101-250 61-90 251-350 91-120 351-430 121-250 430+ 250+	PM10 PM2.5 SO2 24-hr 24-hr 24-hr 0-50 0-30 0-40 51-100 31-60 41-80 101-250 61-90 81-380 251-350 91-120 381-800 351-430 121-250 801-1600 430+ 250+ 1600+	PM10 PM2.5 SO2 NOx 24-hr 24-hr 24-hr 24-hr 0-50 0-30 0-40 0-40 51-100 31-60 41-80 41-80 101-250 61-90 81-380 81-180 251-350 91-120 381-800 181-280 351-430 121-250 801-1600 281-400 430+ 250+ 1600+ 400+

Table.4. Average concentration of $PM_{2.5}$, PM_{10} , SO_2 and NOx ($\mu gm/m^3$) at residential and industrial sites during April to June 2019.

	Industrial-Krishidhan Seeds Pvt. Ltd				Residential-IMA Hall					
Sr. No.	Hrs Date	24 Hrs Avg. (µgm/m ³)			IIma Data	24 Hrs Avg. (μgm/m ³)				
		PM _{2.5}	PM ₁₀	SO ₂	NOx	Hrs Date	PM _{2.5}	PM ₁₀	SO ₂	NOx
1	04/02/2019	100	261	9.16	45.03	04/04/2019	100	227	10.37	38.62
2	04/03/2019	92	222	10.57	42.07	04/05/2019	106	240	11.23	38.70
3	04/09/2019	96	214	10.31	39.57	04/11/2019	99	247	8.92	34.29
4	04/10/2019	90	217	10.76	34.36	04/12/2019	105	292	9.61	40.62
5	04/16/2019	91	226	8.88	35.20	04/18/2019	102	251	9.81	36.65
6	04/17/2019	98	241	10.18	36.57	04/19/2019	99	254	10.77	36.69
7	04/23/2019	96	234	10.35	38.08	04/25/2019	104	241	10.74	34.30
8	04/24/2019	99	227	9.67	35.04	04/26/2019	99	258	9.35	39.13
9	04/30/2019	93	228	9.37	37.83	05/02/2019	94	230	10.49	39.08
10	05/01/2019	95	<u>265</u>	10.36	37.68	05/03/2019	100	235	9.33	36.35
11	05/07/2019	98	<mark>244</mark>	10.56	43.94	05/09/2019	103	272	10.94	35.39
12	05/08/2019	91	277	9.00	32.81	05/10/2019	89	253	9.50	41.27
13	05/14/2019	95	215	10.73	47.92	05/16/2019	98	271	9.96	32.73
14	05/15/2019	99	<mark>247</mark>	9.61	46.89	05/17/2019	96	248	9.09	36.13
15	05/21/2019	97	228	9.21	4 <mark>1.63</mark>	05/23/2019	100	283	10.24	35.77
16	05/22/2019	98	<mark>223</mark>	9.96	3 <mark>9.28</mark>	05/24/2019	99	262	10.32	41.78
17	05/28/2019	94	<mark>225</mark>	10.61	37.90	05/30/2019	98	230	9.99	41.29
18	05/29/2019	99	224	9.86	38.80	05/31/2019	100	2 <mark>28</mark>	10.80	40.96
19	06/04/2019	95	258	9.77	40.12	06/06/2019	105	2 <mark>60</mark>	9.64	37.88
20	06/05/2019	100	277	10.45	37.18	06/07/2019	94	258	9.71	34.97
21	06/11/2019	98	225	10.24	36.16	06/13/2019	99	263	8.85	36.52
22	06/12/2019	91	246	11.00	37.20	06/14/2019	98	258	9.25	35.57
23	06/18/2019	98	232	10.05	34.34	06/20/2019	105	243	9.68	42.25
24	06/19/2019	93	224	10.25	34.24	06/21/2019	90	229	11.05	33.61
25	06/25/2019	80	218	10.44	37.77	06/27/2019	95	212	10.44	37.31
26	06/26/2019	94	217	10.07	34.70	06/28/2019	83	233	11.14	37.29
Averag	e	95	235	10.05	38.55		98	249	10.05	37.51

Table 5: Sub Index of Pollutants at different monitoring stations

Station Name : Industrial site: Krishidhan Seeds Pvt. Ltd.								
Sub Index		AQI						
	PM _{2.5}	PM ₁₀	SO_2	NOx				
Maximum	100	277	11	47.92	277			
Minimum	80	214	8.88	32.81	214			
Average	95	235	10.29	38.55	235			

Station Name : Residential site: IMA Hall.								
Sub Index		AQI						
	PM _{2.5}	PM ₁₀	SO ₂	NOx				
Maximum	105	292	11.23	42.25	292			
Minimum	83	212	8.82	32.73	212			
Average	98	249	10.05	37.51	249			

IJCRT2203086 International Journal of Creative Research Thoughts (IJCRT) <u>www.ijcrt.org</u> a646

The observations reveal that SO₂ levels were within the prescribed NAAQS during the study period at both the monitoring stations. The reason for low levels of SO₂ may be various measures taken such as reduction of sulphur in fossil fuels like diesel, coal, lesser use of old vehicles, etc. NO₂ levels were also within the prescribed NAAQS during all the monitored location. The reasons for low levels of NO₂ may be various measures taken such as removal of old vehicles, better traffic management, tightening of vehicle emission standards etc. Sulphur dioxide and oxides of nitrogen are the main pollutants contributing to ambient air which is given out by fossil fuel burning, automobiles and industries [38,39]. The seasonal concentration pattern of air pollutants is driven by emission characteristics of the dominant sources and meteorological conditions [13]. Researchers [40-42] reported analogous observations.

PM_{2.5} levels and PM₁₀ levels exceeded the prescribed NAAQS at both the monitoring location. The reason for high particulate matter in the study area can be high traffic density, heavy vehicle movement, presence of industrial area in the vicinity, natural dust and dust storms, etc. The major contributors of particulate matter in ambient air are automobiles and industries [7,40,41]. Members of sensitive groups like older adults and children can experience health effects like heart or lung disease on prolong exposure and at greater risk [43-44] compared to general public which is affected to lesser extent. Coarse particles (PM₁₀-2.5) can irritate a person's eyes, nose, and throat as indicated by reports of Environment Protection Agency, USA. The lower level of particulate matter can be achieved by increasing the green belt development in the area and also by better traffic management, reducing usage of particulate matter forming appliances, avoiding burning, quitting indoor smoking, walk instead of vehicle, using solar energy, regular maintaining vehicle, etc.

CONCLUSION:

The main air pollution problem in Jalna City is the increasing levels of particulate matter ($PM_{2.5} \& PM_{10}$) concentrations in air. The predominant cause of air pollution in the study area is the growing number of vehicles, industries, automobiles, construction work, combustion activities, agricultural activities; mining activities and deforestation are major contributors. Particulate matter when inhaled in large quantities lead to development of cardiovascular effects such as cardiac arrhythmias and heart attacks, and respiratory effects such as asthma attacks and bronchitis. The level of impact is also dependent on the size of the particulate matter. Coarse particles results in adverse effect on lung system while fine particles are deposited in the deeper parts of the lungs. The results reveal that residential site - IMA hall compared to Industrial site- Krishidhan seeds Pvt. Ltd. is having poor Air Quality index and is comparatively more polluted station among both stations. AQI of both the sampling stations indicates that pollutants concentration in the air of Jalna city is continuously increasing and deteriorating the quality of air. The air quality at both these stations falls under moderately polluted to poor category.

ACKNOWLEDGEMENTS:

Authors are grateful to Director, Maharashtra pollution control board (MPCB), Aurangabad for providing financial, technical and scientific support for the current study. We also extend our gratitude to Badrinarayan Barwale College, Jalna for providing supports like laboratory, infrastructure and co-operation. We are also gratified to Enviro-tech lab for valuable co-operation, suggestion and also those who helped directly and indirectly for this work.

REFERENCES:

- 1. Harison R M and Yin J. 2000. Particulate matter in the Atmosphere: which particle properties are important for its effects on health? *The Science of the Total Environment*, 249(1-3): 85-101.
- 2. Kim K H, Lee J H, and Jang M S. 2002. Metals in Airbourne particulate matter from first and second industrial complex area of Taejon City, Korea, *Environmental Pollution*, 118, 41-51.
- 3. Sharek M, Cupre P, Bartos T, Kohutek J, Klanova J and Holoubek I. 2007. A combined approach to the evaluation of organic air pollution. A case study of urban air in Sarajevo and Tuzla (Bosnia and Harzegovina), *Science of the total Environment*, 384 (13): 182-193.
- 4. Tashiro Y and Taniyama T. 2002. Atmospheric NO₂ and CO concentration in Lima, Peru, *Environmental International* 28: 227-333.
- 5. Baladauf R W, Watkinns N, Heist D, Bailey C, Rowley P and Shores R. 2009. Near air quality monitoring factors affecting network design and interpretation of data, *Air Quality Atmosphere and Health*, 2: 1-9.
- 6. Atash F. 2007. The deterioration of urban environments in developing countries: Mitigating the air pollution crisis in Tehran, Iran, *Science Direct*, 24 (6): 399-409.
- 7. Hrdlickova Z, Michalek J, Kolar M and Vesley V. 2008. Identification of factors affecting air pollution by dust aerosol PM₁₀ in Brno city, Czeck Republic, *Atmospheric Environment*, 42(37), 8661-8673.
- 8. Gupta A K, Patil R S and Gupta S K. 2003. A long term study of oxides of nitrogen, *Journal of Environmental Science and Health*, 38: 2877-2894.
- 9. Celis J E, Morales J R, Zaror C A and Inzunza J C. 2004. A study of particulate matter PM₁₀ composition in the atmosphere of Chile, *Chemosphere*, 54(5) : 541-550.
- 10. Zhang M, Song Y and Cai X. 2007. A health based assessment of particulate air pollution in urban areas of Beijing in 2000-2004, *Science of the Total Environment*, 378(13) 3: 100-108.
- 11. Franchini M and Mannucci P M. 2007. Short term effects of air pollution on cardiovascular disease outcomes and mechanisms, *Journal of Thrombosis and Haemostasis*, 5(11) : 2169-2174.
- 12. Allen R W, Davies H, Cohen M A, Mallach G, Kaufman J D and Adar S D. 2009. The spatial relationship between traffic generated air pollution and noise in 2 US cities, *Environmental Research*, 109(3): 334-342.
- Gomiscek B, Stopper S, Preining O and Hauck H, Spatial and temporal variations in PM₁, PM_{2.5}, PM₁₀ and particle number concentration during AUPHEP project, *Atmospheric Environment*, 38 : 3917-3934, 2004.
- 14. Rao B P S, Mhaisalkar V M, Kumar A, Shrivastava A, and Devotta S. 2009. Seasonal variations of Ambient levels of Sulphur dioxide in and around a typical Indian petroleum Refinery, *International Journal of Earth Sciences and Engineering*, 2(3): 231-237.

- 15. Suess M J. 1979. An International approach to air quality monitoring, *Atmospheric Environment*, 13:211-221.
- Titta P, Raunemma T, Tissari J, Vli-Tuomi T. Leskinen A, Kukkonen J, Harkonen J and Karppinen A. 2002. Measurements and modeling of PM_{2.5} concentrations near a major road in Kuopio, Finland, *Atmospheric Environment*, 36:4057-4068.
- 17. Bishnoi B, Amit P and Jain V K. 2009. A comparative study of air quality index on factor analysis and US. EPA methods for an urban Environment, *Aerosol and Air Quality Research*, 9:1-17.
- 18. Ott W R, Jr. Hunt W F. 1976. A quantitative evaluation of the pollutant standard index, *Journal of Air Pollution Control Association*, 26:1950-1954.
- 19. Ott W R and Thom G C. 1976. A critical review of air pollution index systems in the United States and Canada, *Journal of Air Pollution Control Association*, 26:460-470.
- 20. USEPA. 2014. United States Environment Protection Agency.
- 21. Ontario Review of the Ontario air quality index and air quality health index system. 2013. Air resonance Branch, Ontario ministry of the Environment, Toranto, Ontario, Canada.
- 22. Charan P D, Sahel H. 2014. Study of respirable dust in Ambient Air of Bikaner city and its impact on human health, *Applied Journal of Hygiene*, 3(1): 11-14.
- 23. Sarella G, Khanbete A K. 2015. Ambient Air Quality, Analysis using Air Quality Index. A case study of Vapi, India, International Journal for Innovative Research in Science & Technology, 1(10): 68-71.
- 24. Air Quality Status of Maharashtra 2013-2014, Compilation of Air Quality data recorded by MPCB.
 2014.
- 25. B S Dobhal, R P Shimpi and Mazahar Farooqui 2020. Ambient Air Quality Assessment of Jalna City(MS), India, *Indian Journal of Scientific Research*: 10(2);45-53.
- 26. B S Dobhal, R P Shimpi and Mazahar Farooqui 2019. Evaluation of Ambient Air Quality of Jalna City (MS), India, *International Journal of Research and Review*, 6 (12):341-351.
- 27. B S Dobhal, R P Shimpi and Mazahar Farooqui 2020. Comparative Study of Ambient Air Quality of Jalna City (MS), India, *International Journal of Innovative Science and Research Technology*, 5(6): 219-225.
- 28. Rajajoseph D, Mathan Y and Rajivgandhi V. 2014. Efficient and Environment friendly NOx emission reduction design of Aero Engine gas turbine Combustor, *IJEP*, 34(8), 645-652.
- 29. Erika VonSchueidemesser, Paul S Monks, James D Allens, Lori Bruhwiler, Piers Forster, David Flower, Alex Lauer, William T Morgan, Pauli Passonen, MattiaRighi, Katerinasindelarova and Mark A Sutton. 2015. Chemistry and linkage between air quality and climate change, *Chemical Reviews*, 115, 3856-3897.
- 30. Harison R M and Yin J. 2000. Particulate matter in atmosphere; which particle properties are important for its effects on health, *The Science of the total Environment*, 249, 85-101.

- UNCSD. 2001. Protection of the atmosphere- Report to the secretary General, E/CN.17/2001/2, commission for sustainable Development, New York, USA.
- 32. CPCB (Central Pollution Control Board) 2011. Guidelines for the measurements of Ambient Air Pollution in New Delhi, India (1):55.
- 33. IS 5182.2, 2001. Methods for measurement of Air pollution part-2, Sulphur Dioxide (CHD 32: Environmental Protection and Waste measurement)
- 34. Jacob M B and Hochheiser S. 1958. Continuous Sampling and ultra micro determinations of nitrogen dioxide in air, *Analytical Chemistry*, 30:426.
- 35. IS 5182-2, 2001. Methods for measurement of Air pollution, Part 6: oxides of nitrogen (CHD 32: Environmental protection and waste management).
- 36. Bortnick S M, Coutant B W and Eberly S I. 2002. Using continuous PM_{2.5} monitoring data reports on Air Quality Index, *Journal of the Air and waste management Association*, 52: 104-112.
- 37. Murena F. 2004. Measuring air quality over large urban areas; Development and application of an air pollution Index at the urban areas of Neples, *Atmospheric Environment*, 38: 6195-6202.
- 38. Muschate N S and Chougale A M, 2011, Study of ambient concentration of air quality parameters (PM₁₀, SPM, SO₂ and NO_x) in different months, *European J. of Experimental Biol.*, 1(1), 90-96.
- 39. Md. Asif Ekbal, Hrishabh Gupta, Assessment of ambient air quality index of coal city Dhanbad for public health information, vol.2, Jan-mar 2015, p 50-53
- 40. Bhanarkar A D, Gajphate D. G and Hasan M Z. 2002. Air pollution concentration in Haryana subregion, India, *Bulletin of Environmental Contamination and Toxicology*, 69: 690-695.
- 41. Kaushik C P, Ravindra K, Yadav K, Mehta S and HaritashA K. 2006. Assessment of ambient Air Quality in urban centers of Haryana(India) in relation of different anthropogenic activities and health risks, *Environmental Monitoring and Assessment*, 122: 27-40.
- 42. Chauhan A, Pausar M, Kumar R and Joshi P C. 2010. Ambient Air Quality studies in Uttarakhand (India): a case study of Haridwar and Deharudan using air quality index, *Journal of American Science*, 6(9): 565-574.
- 43. Ramesh Bhat Y, Manjunath N, Sanjay D, Dhanya Y, Association of Indoor air pollution with acute lower respiratory tract infections in children under 5 years of age, *Pediatr.Int.Child Health*, 2012;35:132-135.
- Marilena Kampa, Elias Castanas, Human health effects of air pollution, *Environmental Pollution*, 151 (2008) 362-367.